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Figure 1: Idealized Experiment for Spectrumn Analysis



power in upper sideband B+( 0)

IC 101Ic

B B+(O)

(a) power in upper sideband B+( ~

Sx x(ej(0+0))

power in baseband

X 0r

B

(b) power of demodulated signal in baseband B

Figure 2: Power in Upper Sideband and in Baseband



{ xj)H()s {y t}IH(z) (e- txt}

fe- It HB(eJ8

0

Figure 3: Alternative Ezpenment for Spectrum Analysis



Figure 4: Frequency Response of Several Dominani and Subdominant Slepian Sequences
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Figure 5: Lowpass-High pass Decomposition of Identity
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ABSTRACT

Among nonparametric estimators of the power spectrum, quadratic estimators are the only ones that

are dimensionally correct. In this chapter we motivate interest in quadratic estimators by setting up ideal-

ized experiments for spectrum analysis and deriving maximum likelihood estimates for narrowband power.

These idealized experiments show that quadratic functions of the experimental data are sulficients statistics

for estimating power. The maximum likelihood estimates show that low-rank projection operators play a

fundamental role in the theory of spectrum analysis. The projection operator plays the same role as a band-

pass filter in a conventional swept frequency spectrum analyzer. The mean-squared error of a maximum

likelihood estimator of power is inversely proportional to the rank of the estimator.

With our maximum likelihood results in hand, we turn to a systematic study of quadratic estimators

of the power spectrum, We prove a fundamental representation theorem for any quadratic estimator of

the power spectrum that is required to be positive and modulation-invariant. The resulting estimator has

a multiwindow interpretation. The quadratic estimator may be tailored to produce a number of classical

estimators, including those of Schuster, Daniell, Blackman and Tukev, Grenander and Rosenblatt, Clergeot,

and Thomson. In one of its forms, the quadratic estimator is the maximum likelihood estimator for the

power in a narrow spectral band. In this form, the estimator projects data onto a low-rank subspace where

the power in the subspace is the estimate of the power in a spectral band. We complete our study' of

quadratic estimators by bounding their mean-squared error. '[he results corroborate the bounds obtained

from thp idealized exp,-riments and bring a wealth of insight into the trade-ofrbet weein model bias (or spectral

resolution) and estimator variance.

We tie up our results by illustrating a number of equiv;lent implementations tor qliudratic forms in



:ow-ran~k project ion Operators.



1.0 INTRODUCTION

In tie theory o witle-se ie .tationary itte .eries. tHer+, - no c I'lu:;ozi iut 't,, i,':iii ,t t!o4 1o

term power spectrui. But what does it mean to estimate one. and what are tie motivations for doin ,-

For Schuster [11 the motivation v,-,ts to find hidden periodicities in meterological tiiiie -eries. iid tlerfre

it was natural for him to form a "'periodo-ran" that woul d peak when p:rioic cot poitunts ,f the tine

series matched the period of his analyzer. For Einstein '2). the tuotivat ion was to detrimie the variance

of a Fourier eries coefficient in a periodic expansion of a random waveforn. Einstein's variance expression

was, in fact, the power spectrum, lie showed that the power spectiruin was the Fourier transform of tile

correlation function for the random waveform. This finding, refined and extended in Wiener's work on

generalized Fourier analysis [3], led to the generally held view that spectrum analysis was a problem of

correlation analysis. This was the point of view adopted by Blackman and Tukey 'I].

The Schuster and Einstein views are actually compatible. The periodogram and the Fourier transform of

the estimated correlation sequence produce identical estimates of the power spectrum, provided the so-called

biased estimate of the correlation sequence is used. Trhe mean of the periodogram is a Bartlett-windowed

version of the true spectrum, and it converges to the true spectrum as the length of the data window increases

without bound. The variance of the periodogram does not converge to zero. meaning the periodogram is an

inconsistent estimator of the power spectrum. The basic problem with the periodogram is that it generates

roughly independent point estimates of the power spectrum at the same rate that it acquires new data,

leaving no room for statistical averaging. This problem was understood by Daniell, who proposed the use of

frequency averaging to stabilize the variance of an estimator of the power spectrum [5]. The closely related

ideas of segmenting, windowing, and averaging, as advocated by 'Welch [6], are simply variations oii Daniell's

theme. All of these variations produce estimates of the power spectrum that are quadratic in the data.

In the sections that follow, we develop a theory for quadratic estimators of the power spectrum. \Ve

begin in Section 2.0 with a hetiristic discussion of the aims and approaches of spectrum analysis. \Ve set up

an, idealized experiment and ,llu.-trate tie role played bv bandpass filters that concentrate power in a narrow

spectral band. We generalize this idea to linear transbrniations that concentrate power and discover Slepian

-,equences [7] ,.s ile appropriate basis for building bandpass su bspaces. In Section 3.0 we use this idealized

31



xperinent to derive iaxi mum li k -lihood estimates for the power in a narrow sp,'cirailhand lhe s-iml. ,S

ire quadratic forms in the experimental data. We analyze the mean and variance of the cstimators ani

Ihow that the mean-squared error of a reduced rank estimator depends inversely on the rank. We thei show

that rank reduction is a necessity in any practical approach to power estimation. By introducing the idea of

:omplex modulation, we derive Thomson's {S] family of low-rank, swept-frequency pi airatic cstiiators <.1

the power spectrum.

Quadratic estimators arise as sufficient statistics in an idealized experiment for measuring power in

a narrow spectral band. In Section 4.0 we prove a representation theorem for quadratic estimators o"

the power spectrum that are non-negative and modulation-invariant. In our view. these are minimum

requirements for any estimator of the power spectrum, quadratic or not. We show that the resulting class

of quadratic estimators scales correctly when the data is scaled and preserves the Hlermitian symmetry of

the power spectrum under time reversal. We compute the mean and variance of any" quadratic estimator

of the power spectrum and derive a simple bound on tie mean-squared error of a reduced rank quadratic

estimator. The result brings insight into the tradeoff between resolution and variance and produc, s resuits

much like the multi-window spectrum estimators of Thomson [8]. Our quadratic estimators subsume all of

the classical windowed and smoothed estimators commonly considered for spectrum estimation, includiiig

those of Schuster [1], Daniell [5], Welch [6], Clergeot [9], and many others. In one of its more illuminating

forms, the quadratic estimator matches the maximum likelihood estimator for estimating the power in a

narrow spectral band. In this form the estimator projects data onto a low-rank subspace and uses the power

in the subspace as an estimate of power in the narrow spectral band. The projection operator is constructed

from Slepian sequences. The net result is that we have at least three interpretations of Thomson's multi-

window spectrum estimator, each ofwhich brings its own insights: (i) it is the maxinmum likelihood estimator

of the power in a narrow spectral band; (ii) it is a projection onto a low rank subspace, followed by a power

computation; and (iii) it is a reduced rank, frequncy averaged periodogram (a reduced rank version of

Daniell's smoothed periodograin).

\\e tie up our results for quadratic estimators of the power spectrui by illustratmii, a miiiber of

,',tuivalent inli,,.ieiitations. These implementations mise proijection operators, or their close (usins, Slepian



Nwindows. and discrete-time Fourier t ranst'Oris. Al 1 f our resti Its may be extenoi in a ,t raili,,t for w;ird v.;iy

to the estimation of power in nonuniformily sampled time series 0. 1]



2.0 HEURISTIC BEGINNINGS

Spectrum estimation may be divided into two broad categories: (i) estimation of power in a narrow

spectral band, and (ii) estimation of a parametric spectrum model. The first category is often called classical

spectrum analysis, and the second is often called modern spectrum analysis. One of our objectives in this

chapter is to show that there are plenty of modern ideas in classical spectrum analysis.

Category (i) dominated the early work on spectrum estimation, beginning with the original work of

Schuster [1] and proceeding to the current work on windowed and smoothed periodograms. In our view, this

category represent- the view of spectrum analysis that most closely captures the essence of the problem,

namely,

"from a finite record of a wide-sense stationary time series, estimate how the total power is distributed
over narrow spectral bands."

The essential problem is to sweep a narrow-band spectrum analyzer through the Nyquist band in such a

way that the band is highly resolved and the estimates of power in narrow spectral bands have low variance.

Thomson's 1982 paper [8] is the definitive work on multi-window spectrum estimation. It has brought new

insight into this problem and stimulated renewed interest in classical spectrum estimation.

Category (ii) has dominated the engineering literature since the publication of Burg's 1967 paper on

maximum entropy and autoregressive models [12]. The key idea is to assume that the power spectrum

S.,(e -I) belongs to some parametric class such as the autoregressive class and then to identify the parameters

of the model from a record of measurements. Not surprisingly, there are connections between categories (i)

and (ii). The first was established by Parzen [14] in his original advocacy of autoregressive (AR) spectrum

analysis as a method to smooth rough periodograms. Parzen was also the first to recognize the importance of

order selection, which is akin to rank reduction, for the control of approximation error in spectrum analysis.

In Section 3.0 of this chapter, we shall establish a second connection. We shall show that the problem of

estimating power in a narrow spectral band may be rephrased as a problem of estimating parameters in a

structured covariance matrix. This point of view has previously been exploited indirectly by Burg et al [15]

and more directly in [16]-[18]. The resulting estimator of power in a narrow spectral band is a projection-

based spectrmn analyzer that may be interpreted as a reduced rank. frequency avoraged periodogram.
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2.1 The Power Spectrum and Quadratic Estimators

The variance, or power, ofa wide-sense stationary (XVSS) time series {xr} may be written as the integral

ro= JSr(e9) - (1)
-w

where S1,(c
j ) is the power spectral density of the time series and Sr(e) the infinitesimal power i

the band {o- < 0 < 6 + -- . This infinitesimal power is just one variance component in an infinite set of

infinitel resolved variance components. It is surely unreasonable to estimate such an infinite set of variance

components unless, of course, the set is smoothed or finitely parameterized. This suggests two approaches,

corresponding to the classical and modern theories of spectrum analysis.

The first appioach is to replace the infinitely resolved variance components S,a(ej e ) d,- by the finitely"

resolved (or smoothed) variance components

ro(O1)= , ,d)  (2)
B(4¢)

The band B(O) is typically a passband, and ro(O) is the power in the band. This formulation shows spectrum

analysis to be a problem in the analysis of variance (ANOVA), a problem where the estimation of infinitesimal

variance components is replaced by the estimation of finite variance components.

. The second approach is to use an understanding of the underlying physics to parametrically describe the

spectrum, and use a statistical theory to identify the parameters. This formulation leads to the estimation

of autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) power spectra.

The resulting theory is closer to the theory of rational model identification (from output data) than it is to

the theory of spectrum analysis.

If we choose our parametric model of the spectrum to model power in a narrow spectral band, we can

bridge the gap between these two approaches.

2.2 Ideal Filters

Vhie we represent the power of a time series by its variance components, we interpret ro(O) to be "that

part ot the total power that lies iII Iand B(o)." But this is evidently "the power in that component of the

time series that lies in band B(O)." llow can we estimate this power? If we had an infinite record of data and



infinite computing resources, we could pass the data (or signal) through tile ideal bandpass filter illustrated

in Figure 1. The frequency response of the ideal filter Ip(-) is

Hn 6 ) = {1, 0 E B(o) (3)
HB~e°) = 0, 0 B(O),(3

where

B (o ) 0 {0 '0 - o[< ), .i

The filtered signal

{Ye) = HB(Z){Z,} (5)

is surely what we mean by the phrase "that part of the signal {x} that lies in band B(6)." The variance of

Yt is the power in the band:
E , 1 dO

J2w
B(o)

= 3 C_ dO 
(6)

2,'
t=-00 B(O)

This result shows that the power in the band depends on the entire covariance sequence {rt} for the time

series {x}. If one adopts the point of view that spectrum analysis is a problem in correlation analysis, then

one is forced to estimate an infinite number of correlations or to impose a parametric model for extending

them outside some range of indexes for which they can be estimated.

Under an appropriate ergodic assumption, the estimator

I M
= 2 Z lyI 2  (7)

is a consistent estimator of the narrow-band power ro(o). This estimator may be written as tile quadratic

form
oo

(0)= Z .n.qnm.r, (8)

where

.T Y h,-nht-m. (9)

e= - .1

In the limit as Al - oc, the doubly indexed sequence q,,. depends only on n - 7n, and the quadratic form

is Toeplitz. Grenander and Rosenblatt call such a Toeplitz quadratic form a spectro:ram [9].



2.3 Complex Domodulation and Frequency Sweeping

When the tirne series {x} is real, as we shall assume, then the power spectral density S,,(e) is

symmetric about 0 = 0. The power in the narrow spectral band B(O) is twice the power in the upper

sideband B+(o) illustrated in Figure 2(a). But the power in this sideband is just the power in the complex

demodulated signal {e-Jtxt} that lies in the baseband B = -,3-r < 0 < 37r}. This property follows

from the fact that S,(eit"+)) is the power spectral density of the demodulated signal, and the power in

the upper sideband may be written as

.. O0+3?r d
0-302 1 21

S(10)

,3 ir

2r

See Figure 2(b) for an illustration. This finding permits us to replace the idealized experiment of Figure 1

by the idealized experiment of Figure 3. In this experiment, the time series {x,} is complex demodulated in

order to sweep the upper sideband down to baseband where it is filtered by the ideal baseband filter 1(z).

The estimator
=M I l ' '  (11)

2 2,1 + It = - Ai

is a consistent estimator of the power in upper sideband B+(6) and of one-half the power in passband B(O).

2.4 FIR Filters

The basic idea embodied in the alternative experiment of Figure 3 may be turned into a practical

alternative if we replace the ideal baseband filter HB(z) with a causal, finite-dimensional FIR filter 11(z):

N -1

H(:) = h. - °

n=O (12)
= hT4I(z).

where

1() = [1 - z-- .. z-( -) ] : [h 0  h, ... v _I]T. (13)

If tie filter 1t(z) is to have properties analogous to those of (lie ideal bandpass filter, then it should be

as frequency selective as we can make it. One way to measure frequency selectivity is to pass whilte noise

9



hrough the filter and measure the output variance:

T

ro = J I1(e'°)12  (.)
2 x

The part of this power that lies in baseband B is

ro(B) = I H(cJO)2d0 (13)

B

If we use the representation H(z) = hT(Ii(), we may write this power as

ro(B) = hT o 2116

B

= 1TRh

where the Toeplitz matrix R depends only on the baseband B:

R = ,'(eg)4''(,) d= (17)
B

,,_, = 1ejB(m-n) d' = 3sinc[3,r(7n - n)].
_27r

We would like to make I(z) as frequency selective as we can by maximizing ro(B). under the constraint

that r0 = hTh = 1. This leads to the following problem:

max hTRh subject to the constraint hrh = 1. (18)
h

The solution is to make 1i the dominant eigenvector ul, corresponding to the maximum eigenvalue A2, of R:

R = UA 2 UT (RU = UA) (19)

U =[UU-1 UN A= dig(AA. 2 N Al >A2, >...> AN

The eigenvectors of R are the Slepian sequences featured so prominently in Thomson's paper [8].

In summary. the most frequency selective FIR filter 1i for band B is the filter

11(z) = hr Tq(), (20)

where 1i = u is the dominant Slepian sequence for baseband B. When {Yt} is the output of this FIR filter,

the consistent estimator

r()= 2.11 It/ 1 (21)

10



is a Toeplitz quadratic forn as long as .11 > N.

2.5 Linear Transformations

These results may be generalized by considering a problem that is closer yet in spirit to practical

estimation of power in a spectral band. Tile idea is to replace the FIR filter I(z) by a linear transformation

11 that maps an .N-dimensional record of the modulated time series {e-0'tx,} into an m-dimensional record

of t ransfornd measurenments:

y = tlD(e-j')x, (2:2)

%%-here

Y = [1o Y," ..y.iI: x = [XO X, ...X _]T; D(eJ') = diag[1 e( . .e H ' '] (23)
cT
r

H= K] m<XN. (2.1)

The frequency selectivity of the linear transformation I is measured by passing white noise x through it

and measuring the average output variance over the in output components:

ro '1 ElY!12 1 E tr[IfxxTHT]
m M
=-tr III 1(edo) P(ej' O t

The part of this variance (or power) that "resides in band B- is

ro(B) = ltr[I J(eJ6)tP*(e
-9) .-d HT

B (26)
1

= -tr[HRHT],
m

where R is the matrix defined in Section 2.4.

If the linear transformation is to have properties like those of the linear filter H(), then we would like

it to maximize ro(B), under the constraint that each row of ! have unit norm:

max tr[IIRtlT ] subject to the constraints cc,, = I (n = 1,2 .. ). (27)

The problem is to find tlie saddle points of t lie Lagrangian

in i

= Z(Rn L (C,,e, - 1). (28)

11



N,c -sarv coniditiolis are

Rc, = \2c,, (29)

for each n. This makes c, the Wth dominant eigenvector of R and p, the corresponding eigenvalue A2. The

resulting power in B is

ro(B) = ltr[IIRH] =n , A. (30)
in rn

The linear transformation H may be written as a matrix of Slepian sequences:

-T

H= [i (31)

2.6 Ai Illuminating Example

Let's try to illustrate the frequency selectivity of the linear transformation H. The variance r0 may be

rewritten as

- Tro I F)[ -~j d

- itJ 2,r (32)

dO
= J 1U"(e'9 1j 27r

IUn(e' )12 
- uT1*(eje) : froquency response of the nh Slepian sequence.

The component of this variance that lies in band B is

ro(B) = IM IU.(')l2 - (33)
n= B

So, the frequency selectivity is measured by the average of the frequency selectivitics for the in eigenvectors

U,
1 
,

Let's choose V = 6.1 and 13 = {0 : -3,r < 0 < 3r, 3 = 1/16}. rhe resulting time bandwidth product

is N3 = 1. The number of dominant eigenvalucs of R is I (tlie time-handwidth pro tict). The frequency

12



r,-tose of .e\,.ral dominant and subdonitnant Slepian sequences is illustrated in, Figure t. The fr, ,uency

r.,poe -,f the first four eigenvectors, namely

4

E I ( " 2, (31)
n=1

l ]Ott, d III Fiure 5. together with the frequency response of the remaining sixty eigenvectors, nanely

64

n=5

These results show that the dominant eigenvectors concentrate power on the band B. The subdominant ones

do little in the way of concentration. In fact, their frequency selectivity is concentrated out-of-band. The

results of Figure 5 may also be interpreted as follows. The frequency response of an identity transformation

is
'A'= %P'"fJ1)'P(c'1) = wl U'(l)T, PwRU)

n=1 (36)

= 'lN(d9)P'I(c'e) + q,*(e)(I _ P)'l,(c ),

where P is the rank-rn projection built from the dominant Slepian sequences. The frequency" response of the

projection is just the frequency response of the dominant eigenvectors:

'i"eep¢ e  L 'e()j, (37)

n=1

%%here

= u = ffTH. (3S)
n=I

It is clear that the linear transformation 1! characterizes the projection P, whose range is a low-rank subspace

where most of the power in the band B is concentrated. This is illustrated in Figure 6.

2.7 Maxinmum Entropy Interpretation

There is another way to describe the rn x N linear transformation I derived in S2ction 2.5. It is a linear

transformation that produces a maximum entropy version of white noise, under the constraint that the rows

of 11 are normalized. The resulting entropy of y = lIx when x is white is

r - In [(2-,Tc)-,/ 2 (det llllT) - 1/2]

?n (39)
T ln(2%rc).

13



The random vector y = 11x is also as white as it can be, with covariance

Rly = EyyT = E IlXX 11 T = 1, (.10)

and its prediction error is as large as it can be.

'Fie norm-squared of y may be written as a quadratic form in the projection operator P:

y Ty = xTHTHx
(41)

= xTpx = IIpxIl 2.

The linear transformation I that maximizes entropy also characterizes the in-dimensional subspace (tT)

where the largest fraction of the power in band B lies (and vice versa). This power is approximately the

integral of the in-dominant frequency responses U 1,,(e J ')J2 over the band B:

Ey Ty tr[P]

r '= j 2 I 
)dO

227,
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3.0 MAXIMUM LIKELIHOOD ESTIMATION OF POWER

\Ve shall begin our study of maximum likelihood theory, and its application to spectrum analysis.

Iy returning to the experimental setup illustrated in Figure 1. flowever, we n,-w ask what happens when

only tile finite snapshot y = [YO Yl '" YN- 1]T is available to the experimenter.

Let us assume that tile time series {xt} is Gaussian and wide-sense statio:,ary (\VSS). with mean

zero, covariance sequence {rt}. and power spectrum S1-(ecJ). The snapshot y is then a normal random

vector. Its mean is zero and its covariance matrix 1?,y is related to the power spectrum of {Xr as follows:

1?! y' = E Y Y T = f r e a q ( ° q ' c ° 2"3

B(0,)

The vector %P(e'9) is called a Fourier vector: when evaluated at 0 = 2,rm/N., m = 0.1 ...... V - 1. it is called

a DFT vector.

Our shorthand notation for describing the snapshot y is

y : NY[O. Rvy ].  44

It is clear that the information about the power in band B(o) can be carried only in the covariance structure

of y. The covariance matrix R,y is Toeplitz. meaning that the power in band B(O) is related to R. as

follws:

N 2-,rI=,ro(o) =~ tr h](5

The problem of estimating the power ro(o) in the band B(6) is a problem in estimating tile trace of Ry.

In maximum likelihood theory, the invariance theorem shows that the problem of estimating tr R, is a

problem of estimating Ryy and then finding its trace. This brings us to a discussion of maximum likelihood

estimation of covariance matrices. In the discussions to follow, we replace ro(6) with the notation r0 in order

to simplify notation. But r 0 is always rn(o), and estimates i' are always estimates r0(o).

3.1 Maximum Likelihood Estimation of the Covariance Matrix

The flow of ideas for parametric spectruni analysis is illustrated in Figure 7. In the figure, Sj (2)

and r, denote tile spectrum ani correlation scquence of {y, }. If tile measuremonts are drawn from this wide-

-,nse stationary time serit.s. then tile covariance matrix for the tlenasu renients mly I he constricted fromi the
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covariance sequence. The covariance matrix is denoted RY. If the measurement sequence y is multivariate

normal, denoted y : %'[0. Ru] , then the covariance matrix R., may be estimated from a criterion like

maximum likelihood. The estimated covariance matrix is then used to estimate the spectrum. Generally, the

covariance matrix Rvy has some special structure, with unknown parameters. Procedures such as maximum

likelihood for identifying the parameters are generally very complicated because tile parameters are imbedded

in the determinant and inverse of a covariance matrix. However, if the time series is autoregressive, linear

prediction approximately solves the maximum likelihood problem [13].

In the theory of maximum likelihood (ML), information about the covariance matrix is carried in

the log likelihood function L(Ryy;y):

-N11

L(Ryy;y) = ln(2:r)- I ln det RY, - 1 yT Rly. (416)

The structured covariance matrix Ry we denote by R,,(_), where 0 is a set of parameters 0 = (0102 • -.

The maximum likelihood equation for determining the maximum likelihood estimate R,1 = Ry,(D is [15]

trL-R..1(Ry- yyr)- R =0; (n = 1. . p). (17)

The Fisher information matrix is

J = {JR- } (1 S)

1/i

and the Cramer-Rao bound on any unbiased estimator of 0 is

Af = E(E_- f_(0- Q_)T _ - *. (49)

Any estimator that achieves the bound is efficient and minimum variance unbiased (MVUB).

In the following section we show how to apply these general results to the problem of estimating

power in a narrow spectral band.

3.2 Unstructured Covariance

When no structural information about the covariance matrix Rv, is known, then tle NIL estimate

of ?R, is

iY -= yy T (.50)
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and the corresponding NIL estimate of the power in band B(6) is

1 
r0 = 7tr[yyT]

1 T

The mean and variance of the estimator are

E =1tr[EyyT] tr[Ry ]

S,(ei)dO (52)

27r
B(6)

'9

var, = tr[RbJ. (53)

This is a very primitive estimator of the power that exploits none of the prior information that we have

about Rv,. For example, we know that Ry is Toeplitz, and this information can be used [15]. But more

than this, we know that Rvy should have a special spectral representation that it inherits from the ideal

bandpass filter HB(ej'). This is the idea that we exploit in the next section.

3.3 Structured Covariance

The real, symmetric, non-negative definite covariance matrix Rvy has the spectral. or orthogonal.

representation

R y = UE 2U'; UTU = 1 (54)

[U I [U ... UNj; E2 = diag(oa "" a...). (55)

We shall assume that U is a known orthogonal matrix and S2 is an unknown diagonal matrix. We shall

represent the diagonal matrix S2 as

= rOA 2; A2 = diag(. ''' )12 ) (56)

1 N
1 = 1. 

(57)
n= I

With this representation of RYY , the unknown parameters are r0, the power in the band, and the nuisance

parameters {A }v. The normalization of the parameters {An}I preserves the connection between r0 and

x t r[Ry, ]

ro = tr[R,,,] = ro tr[A']

= ro.

17



The log-likelihood function takes the very special form

L 0 V -N% I N A 2 'IV T , n

L(ro,{A-}- ;y) = -* n(2r) - In rA- - -n y (59)
1 n=1 n

In this likelihood formula. P is a rank one projection onto the subspace spanned by the nth eigenvector u,

and yrp,,y, is one of N sufficient statistics:

p TPn = u'un.

This finding is important because it shows that, whether or not we use a ML theory, the quadratic forms

Yn PnYn are sufficient statistics for the parameters r0 , }I .

Let's maximize likelihood under the constraint that the {A 2N average to one. The appropriate

Lagrangian is
N N N

£= - ln(rAnA)- = - T
n  An (6

n=1 n= (61)1

The gradients of £ with respect to r0 and A2 may be equated to zero to produce the ML equations

(9, 1 N '1
-= : -0 - -ypy - N =0 (62)
ar0  ro n A2

1_1 n 1 p
= :- Yro Y -- =

1A ) ) Y n n (63)

The constraint may be invoked in the second of these equations to show that the constraint plays no role in

the minimization:

N N
- :_~ n An 2 0 (64)

ro N A2Y Y NN fl (64)
n1n n=1

1-1- =0 ==, j=0.
N

The maximum likelihood estimates of r0 and A' are

N -A 2 y (65)
n18 n
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There are actually two important results here. First, if the {A}€ are known, then the ML estimate of '0 is

o = 1 yrpy. (66)
A2' A

Second, if the {A }N are unknown, then tile normalizing equation may be used to rewrite rO as

1 N N

1 1 (67)

Nn1l n=1IOy" p-y = Iy .
n=l

These two findings, illustrated in Figure 8, show that the ML estimate of the power in band B(6) is quadratic

in the data.

3.4 Mean and Variance

The mean and variance of our two estimators are computed from the mean and variance of the

quadratic, sufficient, statistics yTpy. The rank-one projection Pny is distributed as

Pny : N[O,roA2A,] (68)

A, = diag(0 ... 0 10...0).

This makes the quadratic form y'py = 11PnylI2 a scaled chi-squared random variable with the following

mean and variance:

EyTPy = roAn (69)

var[y T pny] = 2(roAn) 2 . (70)

It is easy to see that the sufficient statistics are uncorrelated and therefore independent:

E(Pny)(Pmy)7 = PnRPm
(71)

A2UnUnTmn.

This means that we may add variances at will to compute the variance of 0.

Unknown {A2})N. When the eigenvalues of R are unknown, then the MIL estimate of ro is

N h Y~p (72)
n1
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The mean and variance of this estimator are

I N

Ei0 = N r0An = r0  (73)
n=1

IN 2r2 1 N

var, o = 2(o,)2 = - Z(A 2  (74)
n=n

It is interesting to ask which distribution of the unknown {A2}N minimizes the variance, under the constraint

N
that + , =1. The obvious answer is A = 1 for all n, in which case

rl2r2

var - N 0 (75)

This question is much more fascinating, and the answer more profound, when the estimator is replaced by

a low-rank approximant. We take up this question in Section 3.5.

Known {A'}. When the eigenvalues of R are known up to the scale constant r0 , then the ML

estimate of ro is
1N 1

ro = " E y T P n y "  (76)

The mean and variance of the estimator are

E = - (r0A 2) = r 0  (77)

n= ; 2°

var 1 2(roA=)2 = 2r()

This latter finding is very important because it establishes he lower bound on the variance of any unbiased

estimator of the power in band B(O). Why do we say this? Because the idealized experimental setup

illustrated in Figure 1 preserves all information about the power in the band, and the snapshot contains all

of the information that one can get in a finite snapshot. The assumption that the eigenstructure of R is

known up to a multiplicative constant in the eigenvalues represents as much apriori knowledge as one can

have about the spectrum S.*(e j e) without giving away its power in the band. Without prior knowledge of

the normalized eigenvalues {A,){, the minimizing distribution of eigenvalues produces the same minimum

variance. Thus, for any unbiased estimator of the power in the band,

var( Szz(ei9) >~ JO S( )2 (79)

0 B(O)
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3.5 Reduced Rank Estimators

"r osiat= we lii i" -- far der:'.c ar-c !tfcctive i: th- ws i,Sc that they require detailed kaowleic

of eigenstructure for their implementation. Typically, such knowledge is hard to come by because eigenstruc-

ture for subdominant spectral modes is notoriously unreliable. So, what if we replace our ML estimators by

low-rank approximations of them?

Unknown {A2)}. The obvious low-rank approximation of 0 is

ro = N" YTpy" (SO)

n=1

The mean and variance of the low-rank estimate are

Ei =o 1 r oI A (81)
rn2va-- =1 (roA2)= ro 1 M (82.

varN0 = n - N E (82)
n=1 n=1

The mein-squared error of this reduced rank estimator is

MSE(m) = E(rO - ro) 2 = (E 0 - ro)2 + var 0

= ro7 MA2 -rog INA) +-- 2r5 I(s )
_n1 Nn---- n=1 (83)

r2 ( N 2 m 2 2
n=m+l N n=1

This mean-squared error may be minimized with respect to the {A} by minimizing the Lagrangian

2 )2 2)2 ( 5 ) (84
=CA + 2 E(A)n - N E A (84)

n=m+l n= n=1

The resulting regression equations are

n < m 4 'A 2 
- = 0

A 2- n'

4 N
A 2 P

nm+l
N

n- --- ~IV4N
nm+I
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Invoke the constraint to solve for j:

7--_ I; = 4N - ' 4 -- 1 (85)
n=1

4N 2  N

m+2' 4N m+2

The resulting minimum value of mean-squared error is

2N )2 20 N 2¥)
N"# (m + 
Ty~m ( -3i- 2 77 -in +-2 (86)

2r2
m+2

This result establishes the lower bound on the mean-squared error of any low-rank estimator of the power

in a band.

Known {A}'. The estimator

0 = E 77 Y'pny (87)

is the obvious low-rank approximation of 0 when the {A}N are known. The mean, variance, and mean-

squared error of O are

E 0 
= r N " (88)

1
var = 2rofl - m (89)

NmSE(m)= 1--_- +2ro'2' M . (90)

The minimizing value of fi is

_ N m 2
N= 1 2 (91)

m+2' N m+2'

and the corresponding minimum value of MSE(m) is

r(  2 , 2 / 1 2
MSE(m) r 2 - )2 + 2r2 2 m

_2r
2  2 m+2 (92)

m+2

This result matches our previous result, leading to the conclusion that the mean-squared error of any low-rank

estimator of the power in a band is bounded as follows:

(-Jr in + 2 27r (93)
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3.6 Complex Demodulation and Frequency Sweeping

Ill ectiua . we argued that the power in khe time series {xt) tha is concentrated in the narro%

spectral band B(o) is twice the power in the complex demodulated time series {e-JOt',} that is concentrated

in the baseband B. This property follows from the fact that the covariance sequencc for the complex

demodulated sequence is {e-Jltrt} and the power spectrum is Srz.:(ej(+e.).

Let's assume that the complex demodulated sequence is filtered by the ideal baseband filter H(z).

illustrated in Figure 3. The complex snapshot observed at the output of the filter is y = D(e-jO)x, and its

covariance matrix is R-,,:

y = D(e-j')x (94)

RYY = Eyy- =j )dO= Eyy~ =Srz( e.J(6+¢))O( e2G)kI*(ei e)-
T'r

= D (e - -o ) J S . , (e )q ( eJ )q ( j )  d D ( e i" ) "

We have used the identity *(ei(O- 0)) = D(e-jO)1(e j 8) to derive these two equivalent formulas for R-yy. The

covariance matrix RP, may be rewritten as

D(ej')tD(e-j ) 
_ Sd(e79 )cI(eiG)4I*(e2 ) dO

B+(O)

The covariance matrix on the right-hand side belongs to a complex snapshot whose spectrum is concentrated

on the upper sideband B+(0). The covariance matrix on the left-hand side belongs to the modulated snapshot

D(ejO)y. The two snapshots are equivalent.

The power in the complex demodulated snapshot y is the power of the original signal that is

concentrated in the upper sideband B+(O) and half the power of the original signal that is concentrated in

the narrow spectral band B(O):

Ely,I = 1 trRv, =JYrze ) d,

B

-_- / d O = 1 ( o ) L (9 7 )

- J 7r''2 2] (~e 2r
B+(O) B(O)

If the power spectral density S,*(e 9 ) is slowly varying in the band B(6), then the translated spectrum

.5r(c r 2(+ 0 )) is slowly varying on the band B. This means that the power in the narrow band B(o) is
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approximately
rO = J S.(e° d- 2,3S__ (e'¢).

B(o)

The covarance matrix RY, is approximately

P, s.,(ejo) J P(ej8)(ej9)

B (99)
1

= S )(e' )R =- ro(<)R
2 3

where R is the baseband covariance matrix derived in Section 2.5:

')dO (100)

B

The trace of R is the time-bandwidth product NO and * trRv, is half r(4):

1 1
tr [Ry r() (101)

Our ML results may be applied without change to the estimation of ro(Q) in the model v'2y .V [0, ro(o) - R],

with +tr . R = 1. For example, when the eigenvectors of R are known but the eigenvalues are assumed

unknown, the reduced rank estimator of ro(o) is

2 - IPyll2 = 2 IIPD(e-'°)x 2  
(102)

p= T
P uu n ; u, : eigenvector of Ru = Au.
n=1

This estimator uses a complex demodulator to generate the snapshot y and the rank-one projections illus-

trated in Figure 9.

3.7 Reducing Rank and Removing the Bandpass Filter

Our most refined experiment for spectrum analysis is depicted in Figure 10(a). The complex

demodulated signal {e-'t"x} is passed through the ideal baseband filter H(z), the resulting snapshot y is

projected through P onto the subspace spanned by the m dominant eigenvectors of R, and the power in that

subspace is used to estimate the power in the narrowband B(¢). As illustrated in Figure 5, the projector

P is very selective in frequency when the rank m is chosen to be the time bandwidth product m = N3.

This means, for all practical purposes, that the ideal baseband filter 11(:) may be removed to produce
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the pratical diagram of Figure 10(b). The diagram of Figure 10(b) may be redrawn as in Figure 10(c).

In !C(c), -I sn7p-hot of d'la - = (xo ...x.v-) is complex denidulaed with the demoduoltion matrix

D(c - ') to produce the complex demodulated snapshot y that is then projected onto a subspace where the

norm-squared is computed and scaled to estimate power.

3.8 Project ion- Based Spectrum Analysis

The spectrum estimator

i0 (6) = ,3 ,(ei') 2V IPD(e-j'1)x1 (103)

is nothing more nor less than the norm-squared of a complex demodulated snapshot that has been projected

onto a narrux Land subspace. A geometrical interpretation is presented in Figure 11. The complex demodu-

lation matrix D(e I) is a initary. or rotation, matrix that simply rotates the measurement vector x into a

position in complex Euclidean space where its projection onto the "baseband ,ubspace (f,,')" may hp "

to estimate the power in band B(O). When this procedure is carred out for all 0, the pC -r spectrum is

mapped out. The result of equation (100) may be rewritten to make it look like Thomson's [8] multi-window

spectrum estimator. Let's write the spectrum estimator as

- ,, II

-~~U --I jo~')Xi.r=n IuDeix(104)

"=1 

e

In this form, the complex demodulated vector D(e-jO)x is correlated with the Slepian sequences {u,}, , and

the squared magnitudes are summed. This is illustrated in Figure 12(a). The inner product uTD(e-jO)x

may also be written as follows:

u - xT1V-JO(ei), (105)

where it'. is the diagonal window matrix constructed from the 1th Slepian sequence and %P(el") is the Fourier

vector:

Wn = diag(u,,(1) u,(2)... u ,(N)) (106)

I = (2)... ?,,(N ))
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The estimator

s == 3= NT n p (e) 1 (107)

is a multi-window spectrum estimator wherein the sequence x is windowed with Slepian sequences, and

the resulting sequence is used to compute the windowed periodogram .lxTV %P(ei0)12. Then rn such

periodograms are averaged, as illustrated in Figure 12(b).

One final interpretation-the multi-window, or projection-based, spectrum estimator is essentially a

reduced rank, smoothed periodogram. To see this, consider the smoothed periodogram originally advocated

by Daniel] [5]:

27r [ 1 2 dO

B(O) t=0

2,r % 1 j )2 dO
B ,=2 (10S)

1
T / dO

- T D(e'I) P(e'))*(ei-) 2; D%-%)x

B

..i __-T (eJiP)RD(eej)x.

This kind of quadratic form will be studied extensively in Sections 4.0 and 5 0. For the time being, we simply

observe that, when the covariance matrix R is replaced by the approximation R U T Y the Daniell
n=1

smoothed periodogram becomes the projection-based, or multi-window, spectrum estimator

1

IV -? Z IunD(e'')xj

I n=1 1

-l1 l P(-)x 2 (109)
-NO

- 6'Z lg*(e)+,b)W .
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4.0 REPRESENTATION THEOREM FOR QUADRATIC ESTIMATORS

The covariance sequence {r,} and the power in a narrow spectral band B(o) are the two most

elementary linear functionals of a power spectrum that are encountered in the study of WSS time series.

The power in a narrow spectral band, namely

ro(o)= J S,(ej) do (110)

B(0)

characterizes the local power of the spectrum. The trigonometric functionals

r =~ c5' =e' e 9 2 (111)

characterize the entire power spectrum S,,(clo) via

.(' rtp : . (112)

Linear Functionals of the Power Spectrum. The experiment illustrated in Figure 13 shows

how other quadratic forms may arise naturally. The sequences {ut} and {vt} are the outputs of two filters,

F(z) and G(:), driven by the common input sequence {xt}. The zero-lag eross-covariance between hif

outputs is

E = j F(e'9 )S,(e'9 )G (e') 2,r (113)
2-,

The quantity u,v," is quadratic in the data {f,}, and the expectation of this quadratic form is a linear

functional of the power spectrum S1.,(ej'). In fact, the expected value of every quadratic form in {x,} is a

linear functional of the power spectrum S,,(eJO).

If we take

F(ed ') = G(e"9 ) = IIB(e') (11.1)

(where IIB(e j') is the ideal bandpass filter of Figure 1), then the outputs ut and I'l are

Ut = Lt = yt (115)

The sequence (y,) is that part of {xt } lying in the hand B(o). Equation (113) is then

, dO
E(1,j 2I) = J Hn(f': {IS (e') ".W (11(i)

2-
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which is the same as equation (6).

If we were to let

G(cJ') = 1. (117)

then y, = x, and the right-hand side of equation (113) becomes

I F (c)S ,.(ej' ) -

-2r'

which is a "'general" linear iunctional of the power spectrum S-.r(ej'). Every such linear functional is the

expected value of a quantity which is quadratic in the signal {x }.

Finite Quadratic Forms. Every quadratic function of the finite data vector x = [ ,0 .. .£• _ j r

has expectation

E[x*Qx] '(eje)S..(e'e),d- (118)

where
N-1 N-i

k----l-jm,-_-OF(e') - qk,,ei~m (119)

(This is a trigonometric polynomial.) Every such quadratic form delivers an unbiased estimate of a linear

functional of S(e j9 ). The family of all such quadratic forms provides information about the power spectrum.

but not enough to completely characterize it. Since

N-i N-i

E[x*Qx] = E 1 qk,, "--, (120)
k=0 m=0

we see that only those values of rL in the range -N < k < N are involved. Estimates of r, outside this

range necessarily depend on some "model" or functional form for S(ejG) or involve extension principles like

maximum entropy (which forces a model indirectly).

If one does not want to assume a model, then it becomes necessary to admit that we can know

something about Sr,(eJO) but that we cannot know it completely. Each linear functional of Sr(e'8 ) forces

it into a hyperplane in function space. Knowing the values of n linear functionals forces .5,(eO) into the

intersection of n hyperplanes. This is still an infinite dimensional space.

4.1 Estimator Properties
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Assuiiinig that we have zi red to~ consider onk q~uadrat ic e,t iniators. we must still dcCide w~hicl,

qua. Irat ic forni to use and we must lec ide how cotnpolimug thle results of Sect ions 2.0 and :3.0 are. As a tool

for eliminating undesirable choices. Ii.- us list some properties which power spectrum estimators of the form

S("j0.X) = X, Q(9 ) X (121)

should enjoy.

ros:tiv'itv. The power spectrum should be nonnegative real.

s(e'9 , X) > 0 (122)

This condition wIll hold if the matrix Q(O) is positive sernidefinite. We will use the notation

Q(O) > 0 (123)

for this.

The rest of the properties we shall list al] involve linear transformations on tihe data vector x.

Aniplitude Scaling. If the signal x is multiplied by the scalar p, then the power spectrum should

be multiplied by 'p?2 . Therefore,

S(e~J8i1X) = PI 2 S(C' 6 .x). (124)

This property holds for any quadratic estimator.

Modulation Invariance. Suppose we construct a signal

Yt = C101.(125)

This is called modulation and shifts the signal in frequency by the angle o. To see this. Consider the

auticorrrlation sequence

(12G)

T1akiigE Fourier t ransfritis %vihds thli fr~~;1ticy dotnutti qtiivaleint.

(127)
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For finite data, the linear transformation in equation (125) has matrix representation

y = D(ej')x, (12S)

where

D(e J ¢ ) diag[1, ej , ej2 .. ej(N- 1 )o]. (129)

The estimator property consistent with equation (127) is

*(e j o, D(e-')x) = S(e j (*-G), x). (130)

We shall call an estimator with this property modulation invariant.

If So(e -',x) is an estimator which does not have this property, then we can construct a one-

parameter family of estimators

.S (e 6 , x) = So (eJ(0+ ), D(ed0 )x). (131)

There is no a priori reason to prefer one member of the family over another. The average

S(ej°'x) = '(ej#, x) d-1 (132)

r7r

would be modulation invariant. Modulation invariance is not unique to quadratic estimators. Most common

autoregressive estimators have the property, even when they are constructed from the normal equations of

linear prediction.

J-Symmetry. Suppose we construct the time-reversal of the signal {xt}:

YJ = X-.. (133)

Then

Eyt+ky* = r-k = r* (134)

and

S( = S 2 (e"). (135)

This produces something different only if the signal x is not real-valued. As estimator version of this is

S(e 9 , JX) = s(e - , x). (1363)
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\Ve will call such as estimator J-syrnmetnc. The matrix

J = '" .(137)1 0 1
reverses the components of any vector to which it is applied.

Band Limiting. Let yt be the signal generated in the ideal experiment of Figure 1. This is that

part of the signal {xt} which lies in the band B(O). Then

S__(e j
o) -

{ S,(e'8 ), 0 E B(6) (13S)

0o, o 0 B(O).

It is (unfortunately) impossible to generate any value of y, from a finite record of the signal {x,}. \Ve would

like to write

y = PBZ, (139)

where PB is some matrix which projects the data {xt) onto the "subspace of signals lying in the band B(o).'

Equation (139) is exact only in the infinite dimensional case. If it held in the finite dimensional case, we

could demand a property of the form

S(ei', PBx) = HB(e' )S(e'9 , x). (137)

Although this property is unattainable with finite data, our estimator should approximate it. To the extent

that we can construct some family of "bandpass filtering" projection matrices for which this holds down to

a certain bandwidth, then we can say that we have "resolution" to that bandwidth. Without it, we can

construct estimators which enjoy all the properties previously mentioned but which are trivial. An example

of such as estimator would be

S(eie x) - 111J2.

We shall not demand as yet that our estimator enjoy all the properties mentioned in the previous

section. To begin, we require a quadratic estimator which is positive and modulation invariant. With this

minimum requirement, we prove the following representation theorem.

Representation Theorem: Every non-negative, quadratic, modulation invariant power spectrum

estimatnr has the form

S(r*,x) = ItVD(&-'R)xII2, (111
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where V is an in x N complex matrix having rank in and D(e je) is defined in equation (129).

Proof: If the estimate is quadratic, then

S (ejo,x) = x*Q( 9)x, (142)

and if it is also nonnegative then

Q(O) >_ 0

for each 9. In particular, Q(O) > 0 and can therefore be factored as

Q(O) = "V, (143)

where V is m x N and

in = rank Q(0).

If the estimator is modulation invariant, then

[D(ejO)x] *Q(O)[D(ej2)x] = x'Q(O - ¢)x

for all x, 9, €. This implies that

Q(O - 6) = D-(ej')Q(9)D(ej')

for all 9, €. Take 0 = 0 and reverse the sign of p to get

Q(0) = D(e-J")Q(O)O(e- j1)

(144)
= D(ej')V*VD(e-J').

Combining equations (144) and (142) yields

S(e j ' , x) = x*D(eJi)V*VD(e-j)x

(145)

= IIVD(e-j')xll2

4.2 Multiple Window Interpretation

The estimator of equation (I41) can be understood as the composition of three operations. Multi-

plying the data by D(e-J') is demodulation, or shifting in frequency, so that what was at angle 0 is now at

zero. Operating on the result by V is akin to passing the demodulated data through a bank of m lowpass

32



filters. The average energy of the resulting outputs is estimated by taking the norm squared. This yields an

estimate of the power in the vicinity of 0.

We can put the computation of S(ej 9 ,x) in another way which allows for tie use of an FFT

operation to provide samples. Write

MN-1

S'(~~~~~Je1 x) E CV-')xL= I ik6 r/pkXkJ .(W

=L1 k-O

In this form, the estimator is seen to be a generalization of the classical periodogram, which is

N- 1
1 V -

In this case, m = 1 and

U 1 T= - ,1  (148)

where

TA (149)17 = [1, 1.....1].(19

If the data is first "windowed" by multiplying pointwise with a window sequence, then we will have the

periodogram with window
- 6I N-1xj,. e_jk# 2.

S (e' ,x) = ' Z (150)
k--0

The general quadratic, positive, modulation invariant estimator in equation (146) is simply an average of in

windowed periodograms. For this reason, it is called a multiple window periodogram. Since it amounts to

the sum of m periodograms, one can efficiently obtain samples of S(ej',x) with spacing 27r/N by employing

m FFT operations.

4.3 J-Symmetry

We shall call any estimator of the form in equation (141) a natural estimator. It is completely

characterized by the mx N matrix V. This matrix is, however, not uniquely determined by the estimator since

multiplication on the left by a unitary matrix U will produce V' = UV and leave the estimate unchanged.

If is in x m an(l

U*U = 1, (151)
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t hen

jlVD(e-j')xI2 = LjjUVD(e-j')xILj. (152)

In general, the matrices V and V' generate the same natural estimator if and only if there exists a unitary

matrix [ for which

1' - UV (153)

This observation is relevant to the following question.

Under what conditions is a natural estimator J-symmetric-i.e. it satisfies the identity (136)? If

we assume that both equations (136) and (141) hold, then

IIVD(e-j')JxI2 = flVD(eJ9 )xjj 2 for all O. x. (154)

\Ve make the observation that the matrices defined in equations (129) and (137) satisfy

D(e-')J = e-j(N-)8JD(e29 ). (155)

Thus the estimator is J symmetric if and only if

IIVJD(ei*)xl1 = IIVD(ei')xl12 for all 0, x. (156)

In other words, V' = VJ produces the same estimator as does V. It must therefore have the form V' = UV

for some unitary matrix U.

In summary, a natural estimator is also J-symmetric if and only if

VJ = UV (157)

for some unitary matrix U.

4.4 The Mean of the Estimator

The J-symmetry and modulation invariance properties provide gross information about the form

(1,11) of natural estimators and the matrix V (equation (157)). \Ve do not as yet have a tool for understanding

the resolution or frequency discrimination properties of the estimator. Intuitively, we know that the rows of

V can be thought of as FIR lowpass filter responses and as window functions. The resolution would then
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be somehow related to the bandwidth of the frequency response functions of these m filters. But why use

in competing lowpass filters instead of one "good" one? In order to come to an understanding of these

phenomena, we are led to evaluate the mean and variance oi natural estimators. The mean will depend on

S(eO) and the matrix V. The same will be true of the variance provided we make the assumption that the

signal z is Gaussian so that we can characterize fourth moments in terms of S(ejo).

Since the estimator S(e8,x) is quadratic in the data vector x, its expectation will be a linear

functional of S(eO). Ve shall construct two expressions for this.

Let R,, be the covariance of the data vector x:

ro r-i .. rN+

R, = E[xx*] . (158)
'r-1

rN ...•• ri  r0

Using the notation of Section 3.0, we may use the Fourier representation (43) to obtain a representation for

the matrix R,.:
f dO

R,, ] Srz(eie)4r(ee)1-*(eje) dO (159)
-27

Now let us compute the mean of S(eji,x):

E[S(ej' x)] = E[x*D(eJ8)V*VD(e-j8)x]

= T4[D(ej)V*VD(e-j)Rz] (160)

= Tr [VD(e-J)R,D(ej*)V*].

This is the first expression for the mean, and it uses the covariance matrix Rr.. This can be reduced to a

linear functional of S(ej ° ) by using the representation (159) for R.,. The result is

J 27
m~(- ) -fs¢)l¢e(-)l .2,r (161)

-w

This bears comment. Let
[IV, (Z)1

TV(z) = V*(= [ . (162)

Then lVP(e JO) is the frequency response of the pth row of V, which we think of as a lowpass filter. The mean

of the estimate is the convolution of the true spectrum with the positive real function

WI )L = 8 ) (163)
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This is tile sum of the magnitude-squared responses of the m lowpass filters. If these filters have small

bandwidth, then E[S(ej'.x)] will be a weighted average of the values of the true spectrum on an interval

of the same width centered at 0. This is the means by which we can judge the resolution of the estimator.

4.5 Variance and Mean-Squared Error of the Estimator

We must assume that the data vector x is real valued and Gaussian with mean vector 0 and

covariance matrix R,,. If

Q = A + jB (164)

is Hermitin, then the random variable

y = X'QX = xTAx (165)

has mean and variance

E[y] = Tr[QR,--] = Tr[ARr,] (166)

var(y) = 2Tr[(AR,.) 2 ]. (167)

Our estimator has this form. with

Q(O) = D(ej°)V*VD(e - j ° ) (168)

and
1

.4(0) = [Q(o) + Q(-O)]. (169)

Therefore,

var (e' 0,x) = 1 [(Q(0) + Q(-0))R] 2 . (170)

If we expand the square in this expression, we will arrive at four terms. It turns out that two of these have

the same trace, and the remaining two have the same trace. Define

M(0) = tVD(e-iG)Rx:D(eiG)V* (171)

N(0) = VD(eJ)R,,D(e- 6 )V*. (172)

(.'Ing the trace identity

Tr(FG) = Tr(GF) (173:1

36



liberally. we see that

Tr[Q(O)RrrQ(O)R.,,] = Tr[M 2 ()] (17.1)

Tr [Q(O)R,.zQ(-G)R ,] = Tr [N(-O)N(O)]

Tr [Q(-O)RzQ()R,,:] = Tr [N(O)N(-)]

= Tr [N(-0)N(0)]

Tr [Q(-O)R..Q(- )P,] = Tr[A 2(-9)].

The middle two terms have the same trace. In addition, 1 2(0) and Mjf2(-0) differ only in imaginary part.

Since they are both Hermitian, they have real trace. and therefore they have the same trace. Combining all

this yields the variance expression

var S(el 9 , x) = Tr [ 2 ()] + Tr[N(9)N(-)]

= Tr[A1(o)M1*(o)] + Tr[N(9)N*(O)] (175)
M Af

= E [IMk (0)12 + INp k(0)12]
p=1 k=1

We can put this in terms of S(ei9 ) by using the representation (159) for the matrix R,- in the definitions

for M(0) and N(O). This yields

M (- 2 (176)

Nk(O) -- )( 2f (177)
-r

Of the two variance terms, the one involving M(O) will likely be much greater than the one involving

N(O) because of the misalignment of the window response functions in equation (177). From equations (160)

and (175), we can write

E[( , '8 , x)] = Tr[M(0)] (178)

,'ar[S (e',x)] > Tr[A '(0)3. (179)
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The inequality is off by the term involving A'(0). These can be used to construct a lower bound on mean-

squared error:
MSE(O) = E[Srr(eje) - (e°,x)]2

= [S, (eji) - ES (ej', x)]2 + var [S(e j ' , x)] (180)

> [S, ,:(ej ') - TrM(0)] + TrM12(0).

Let the eigenvalues of A1(0) be {pl, Pmo. Then

Al
MSE(O) S.z(e'e) - Pk + Z . (181)

k=1 k=1

The minimum of this expression, as a function of the eigenvalues, occurs when

S,:.( eJ)= ,e- for each k. (182)m+l

Placing the minimum in the right-hand side cf (171) produces the inequality

MSE(O) ___ (183)mn+l

Since AI(0) is Hermitian. it can have identical eigenvalues only if it is a scalar multiple of the identity-i.e.

M(O) = VD-(9)R,D(9)V*= .S (ej') I. (184)
M + 1

The lower bound (183) provides a reason for using more than one window. (m is the number of

windows and the number of rows in V.)
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5.0 SPECIAL QUADRATIC ESTIMATORS

The spectral estimator

S(ej e, x) = JjVD(e-j')xj 2  (ISS)

of equation (141) composes three operations: demodulation, lowpass filtering, and energy measurement. It

is interesting to compare this chain of operations with a superheterodyne radio receiver. The heart of such a

receiver is a high quality bandpass filter (the IF amplifier) with a fixed center frequency and bandwidth. The

rest of the receiver merely accomodates this filter. The incoming broadband signal is frequency shifted so

that the desired band is moved into the IF band. On the other side, the output of the IF filter is "detected."

The sensitivity of the receiver depends mostly on tile quality of the IF filter. For our quadratic spectrum

estimator, the quality (variance and resolution) depends entirely on the choice of lowpass filters represented

by the rows of the matrix V.

In this section, we will present some likely choices of V in a somewhat developmental order beginning

with rank-one estimators. Since several classical estimators have the form of equation (141), we will display

them when appropriate.

5.1 Rank-One Estimators

For a rank-one estimator, there is but one lowpass filter, and the matrix V is a row vector. The

estimator has the form of equation (150). That is.

N-12

s(I, = I E kWke (186)
k=O

and

= Uk (187)

There is a choice of interpretations.

As before, we can think of demodulation, followed by lowpass filtering. In this interpretation, the

matrix V represents a lowpass filter pulsc response sequence, and we are using only one value of the lowpassed

output sequence to estimate power.

The more common point of view is that we first "window" that data x. by multiplying by u'k then
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demodulate and perform a time average. The shape of the window function

N-i
w(eil ) = E ku e -  (188)

k=O

will affect both the resolution (bias) and variance of the estimate. The windowing operation may be consid-

ered a form of frequtucy a-'raginq applied to the data. Using the inverse transform

uk = J iV(e29 )eJ k dO (189)
-rT

we see that the vector whose elements are wkXk can be written

J[D(ejo)x] () (190)
-IT

This is a weighted average of the frequency translates of the data, D(ejo)x. Therefore, to the extent that

the window function W(ei e ) is dispersed, frequency resolution is degraded.

5.2 Low-Rank Estimators and the Time Bandwidth Product

The virtue of using more than one lowpass filter-i.e. of using a rank m estimator with m > 1-lies

in the potential of decreased estimator variance. Up to a point, the mean-squared error should be inversely

proportional to m. For given resolution requirements, however, there is a limiting value of m beyond which

no improvement can be expected. This limit is a "time bandwidth product." In this section, we will put

forth an argument for this assertion.

The choice of normalized bandwidth /3, with

0< 3 <1,

is somewhat arbitrary. It is a rough measure of the resolution in frequency we expect from our spectrum

estimator. If we assume that the power spectrum is essentially constant on intervals of length 2r,3, then

an estimate of the power in the band 10 - 0o < 3,r serves as an estimate of 3Szr(e-'°). In other words,

we get an estimate of S,,(c39 ) by estimating the power in a band abrut 00. This estimate will improve as

we increase 3. but only at the expense of resolution. This tradeoff is inescapable, and the sum of ill effects
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diminishes only with increasing data length N. For modulation-invariant estimators, the problem can be

reduced to the estimate of power in the low-frequency band

101 < 37r,(1 )

(with O = 0). This is the passband of the bank of lowpass filters described by the rows of the matrix V.

For convenience, call this band baseband.

For the purpose of estimating baseband power

S.,.(el') '0 3S. (ej°), (192)
-i3?

we would like to isolate the baseband component of the signal. But of course, we have only a finite time

window's worth of data. We are caught in a classic dilemma-trying to isolate a signal (or a signal component)

in both time and frequency. The more concentrated a signal becomes in one domain, the more dispersed it

must be in the other. Although we cannot do this simultaneous isolation exactly, we must do it approximately

if we are to do spectrum estimation.

Both operations-isolation in time (windowing) and isolation in frequency (lowpass filtering)-are

projection operations. For the moment, let x be the entire WSS signal. Let PT be the projection which

zeros out all values of the signal except those in the data window:

Dxk, 0< k< N-I

(PTZ)k = 0, otherwise. (193)

Let P0 be the ideal baseband filter:

(PhX)k = E hxk-, (194)

where
oo krI ol< ,r

E hOe 0o otherwise. (195)
k=-oo

Each of thc, o-,,.ators is an orthogonal projection:

p = p2 = p,. (196)

But they do not commute. (The baseband component of the time windowed signal is not the time restricted

baseband component.) If they (lid commute, then the product

P= PTP 0  (197)
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would also be a projection. This projection would simultaneously isolate a signal component in both time

and frequency.

In certain respects, however, the products are approximately equal:

PT Ph ;t PLPT, (l9S)

and the product is close to a projection having rank N3, the time-bandwidth product. This assertion can be

supported in various ways, each of which corresponds to known multiple window spectrum estimators. We

will sketch some of these in the following sections. For the moment, let us consider the consequences-on

estimator variance-of the assumptions that equations (197) and (198) hold.

Suppose that

P = PTPn = PhPr, (199)

is a rank m = Nf3 projection, and assume that the WSS signal x is Gaussian. Then Px is Gaussian and is

concentrated on a subspace of dimension m, even though there may be N values of the vector which differ

from zero. At most m sca,.lar functions of Pr can be statistically independent. In particular, at most m

independent estimates of baseband power can be obtained, and therefore we can expect an improvement of

1/m in estimator variance when these are averaged. But we cannot expect any more than this.

If we actually had our hypothetical projection P, how should we estimate S(e')? f = PP,

then Pr = PTy, where y is the VWSS baseband component of the WSS signal z. Therefore,

Or

E[y'] = Szz(e j') d ;z 3S.,(e j ° ) (200)

(assuming that the spectrum is fairly constant on intervals of width 207r). Now, using the definition of PT,

I I N-1

I.PTy112 = I"N_. Yk- (201)
k=O

If we use this as an estimate of the variance of yk and combine it with equation (200), we get an estimate

for .r,(e1°):

( )l - Py = Px ".  (202)

This ostimate is obviously quadratic in the data and hax rank in = X3, the time bandwidth product.
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We have been using the notation x for the entire signal

x {xk :-x. < k < -}.

The data vector which appears in the estimator (185) is therearero
2 ] Tr, (203)

where

FT [ I0 ] (191

is an x ,c matrix. The connection between the estimates (185) and (202) would be

S(c , FTx) = J/lFTx12 = IIPxll2 ,  (25 1

'Ilii, would determine V up to multiplication on the left by an orthogonal matrix, via

FVTVF T P
N43

and ther-fore (since FTF = I)

tT 1,= F TPF (206)
Nd

Tl,is formula of course involves a projection P which does not exist. It is useful only for guessing what

should actually be done. Let us now examine some approaches.

5.3 Time Division Multiple Windows

In [6], Velch proposed a quadratic multiple window estimator in which the matrix V would have

the form

1... (207)

Th, first row contains a symmetric window of length much less than N. followed by all zeros. The remaining

rvws are shifts of the first row. by equal amounts. so that the last row is right -justified. This matrix satisfies

th .1- yrniet ry condition

ViJ ( 'V,



with U simply an m x 7n version of J. Let us give an interpretation of this estimator.

As before, let y = Prim be the baseband component of the WVSS signal x. Since y is bandlimited. it

is completely determined by the subsequence of samples spaced 11/3 apart (assuming that this is an integer).

Loosely speaking, then, from every large set of N consecutive values of y, only N/3 are useful. Moreover.

if S(e' is constant on baseband, then the subsamples of y (at spacing l/d3) are indeed uncorrelated.

Furthermore, the covariance matrix of

FT =Fy (2051)

Y.%, -_11

should have rn = N3 essentially equal dominant eigenvalues, with the other N - m = (1 - 3)N very close

to zero. This suggests that the baseband power estimate

1 ( 209rn -i 1.

k=O

would have about the same variance as an estimate which used all N values of y but one-mnt the variance

of an estimate which used only one value of y.

The Welch estimator approximates the scenario we have just described. The first row of V contains

a properly normalized lowpass filter unit pulse response. Because of the successive shifts, the vector

V F TX

represents rm samples of the output of an FIR filter, equally spaced with spacing

1 N

so that

311 T. 1r l = 1 1 (210)
k=O

HIere y, is the FIR lowpass filter output, approximating the actual baseband signal values used in the

#'stitillte (209).

In this formulation, one lowpass filter is used whose passband is ile entire baseband. One Owlin

sarnplrs tie output signal at the Nyquist rate to get (in the (,aussian case) sonmething close to statistical].
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independent and identically distributed random variables. The number of these is approximately ;V3, the

time bandwidth product.

5.4 Frequency Division Multiple Windows

The estimator of the previous section uses N,3 output samples of a single lowpass filter of bandwidth

3. The other extreme is to use an output sample from each of N,3 narrowband filters, each having bandwidth

1/.V. This is the smallest bandwidth for which the Nyquist subsampling rate for the output signal woult

deliver at least one sample in a block of N consecutive values. Since we must limit ourselves to FIR filters of

length N, we cannot achieve a perfect decomposition into narrow bands in this way. WVe shall see, however,

that .V3 is an upper bound on the number of length N FIR bandpass filters for which

(i) the pulse response sequences are orthogonal, and

(ih) the individual passbands are inside baseband.

For white Gaussian data, the first condition would make the output samples of any two bandpass filters

uncorrelated and, therefore, statistically independent.

The simplest example of this approach is derived from the length N discrete Fourier transforms.

We shall begin with this case and then attempt to generalize. To facilitate our discussion, suppose that

N,3 = m

is a positive odd integer. Construct V by letting its m rows consist (in any order) of normalized rows of the

DFT matrix:

Vi) = 1TD(e-i W), Iii < - (211)

where I (see equation (149)) is the vector whose elements are all one. The normalization is chosen so that

the estimator is unbiased in the white noise case or, equivalently,

Tr[V/'*] = 1. (212)

The row V' ) is the unit pulse response of an FIR bandpass filter with passband

0 2-ri r 3'
0-- < -=- (21:3)
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having normalized bandwidth 1/N. The 7n rows of V are orthogonal and, in fact,

V N'= 1-. (214)N3

Therefore this example meets the two conditions we have specified, with a liberal interpretation of filter

passband.

The spectrum estimator constructed with this choice of V is intimately related to the periodogram

(to which it reduces when m = 1). Letting S" be the periodogram of equation (147), our estimator becomes

S(ej' x) = 1 1 Sl(ej-2,i/N']'x). (215)

To obtain a sample of 5, one takes the average of m samples of S 1.

Toeplitz Quadratic Estimators. Generalizing the notion of averaging the periodogram leads to

Toeplitz estimators. Let

H(ej') = h - j k  (216)
k=-ec

be nonnegative real and concentrated in the vicinity of 0 = 0. Let

-1 11T D(e-)x12 (217)
NV Iei, )

be the periodogram, as in equation (144). Consider the averaged periodogram

e(e',X) = H(e*), j -X) LO (218)
-T

This estimator is quadratic and has the form

S(e-',,x) = IVD(e-je)xl 12 ,

where
Q= V*V

= IIt (ej")D (e _3)I 1 T D (e :€O)  d6

(219)

= , II(eJp) I(ec2)4*(eJ5)2r d

-46
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This matrix is nonnegative definite and Toephtz:

Qk1 = 1 H(ejo)e-ja(k-1) L6 (220)Nk =  'J 27r= tk

If H(e).) is composed of m delta functions (and is therefore concentrated on m points, as it would be for

the estimator of equation (215)), then Q has rank m. If, on the other hand, H is positive on an interval.

then Q will be positive definite and have rank N. Thus, averaging the periodogram increases the estimator

rank. (Recall that averaging the data, as in Section 5.1, does not increase rank.) All nonnegative definite

Toeplitz matrices have the representation (219) or (220).

The spectrogram of Granander [19] is Toeplitz in our present sense. Consider once more the

problems of estimating baseband power and then using this to estimate the power spectrum at 0 = 0 as in

equation (202). The operator P in that equation is the approximate projection

P = PTPn,

where P0 is the Toeplitz (lowpass filter) projection of equation (194) and PT is the projection of rank N

which zeroes out all sequence elements except for those in the range 0 to N - 1. This can be written

PT z: FFT,

where F is given by (204). It follows that

FTpT = FT,

and therefore the quadratic form in equation (206) is

Q=VTV= I FTpTPnF (221)

- FTPnF.Nf3

This matrix is a scaled N x N diagonal block of the Toeplitz prection operator Pn. It is also identical to

the matrix of equation (219), provided H(e') is the ideal baseband filter. And, finally, coming full circle, if

R is the matrix of equation (17), then

Q -i (222)

N 3
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Now Q is positive definite and has trace one. However, N - m = N(1 - i3) of its eigenvalues are very close

to zero, while the next are close to 1/r. Thus, Q is close to a rank m matrix. Roughly speaking, this means

that estimator error variance can be decreased by the factor 1/rn only, even though the actual rank of Q is

much larger.

Toeplitz quadratic forms are natural choices in view of the fact that every linear functional of the

power spectrum is the expected value of a Toeplitz bilinear form in the infinite data sequence (Section 4.0).

It has been argued here that a desirable quadratic form for estimating baseband power would have the

properties
(Q = V-V is Toeplitz

rank(Q) = m = Nj3 (223)IVV* = I-L (orthogonal filter responses).

Our first example, equation (211), has these properties. In general, if V*V is Toeplitz, then the estimator

is a smoothed or averaged periodogram as in equation (218). If, in addition, it has rank n, then it is the

average of rn samples of the periodogram. Finally, it can be shown that, if V*XV is diagonal in addition to

the other two properties, then the samples of the periodogram must be separated by integer multiples of

27r/N. For the problem of estimating baseband power, these samples should be in baseband which has width

2rm/N. Thus our example is essentially unique4Of course, multiplication on the left by a unitary matrix

V' = UV

will produce the same estimator. If Q satisfies the conditions of equations (223), then P = mQ is a Toeplitz

orthogonal projection. Thus

S(e', x) = IIVD(e-j' )x I
I IPD(e'9 )xH (224)

is a projection-based estimator. Finally, every symmetric real Toeplitz matrix Q commutes with J. This is

enough to make Toeplitz quadratic estimators J-symmetric in the sense of Section 4.3, since

Q = JQJ

implies

(j'J)*(l(J) = *,
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which implies in turn that

J = UV

for some unitary matrix U.

Non-Toeplitz Forms. Now let us relax the requirement that V*V be Toeplitz. We require tile

maximum number of orthogonal filters, whose passbands are in the baseband. Two orthogonal filters will

give independent output samples in the Gaussian white data case. (Essentially, the power spectrum must

be nearly constant on bands of normalized bandwidth 3.) Therefore we can decrease error variance by the

factor 1/rn, where m is the number of orthogonal filters we can squeeze into the baseband. What is required

at this point is a precise statement of what this means.

Let
N-i

H(ej o) = Z hke -'9kO (225)
k=O

be the frequency response function of an FIR filter. A minimum requirement, if this filter is to be a baseband

filter, is that, for some choice of c > 0,

f rlHe.}l2 fd dO
JH~ej) 12 2,r> (1 - JH(e')12w (226)

In other words, most of the filter energy should be in baseband. This is a quadratic inequality and can be

written

hTRh > (1 - )ITh, (227)

where

h = [h0 hi ... hN- I]T (228)

and R is the Toeplitz baseband autocorrelation matrix of equation (17).

Each row of V corresponds to a filter response. The two conditions together lead to the following

problem. Find the largest (meaning m) m x N matrix V for which

v[R- (I -C)I] V* > 0 (229)

and

VV*=--I 1. (230)
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The eigenvalues of R are

A2> A2> ... >A > 0,

and the eigenvalues of R - (1 - c)I are

A -(I - c)-. . .A -( )

But we know the sum of these eigenvalues, using equation (17), to be

N

Tr(R) = 2 = (231)

Thus. for c sufficiently small, at most N3 of the eigenvalues of R can be greater than 1 - c. The inequal-

ity (217) cannot hold if fewer than m of the eigenvalues of R - (1 - c)I are nonnegative. Therefore, N3 is

an upper bound on the rank m for this problem (when c is sufficiently small).

A stronger statement of this situation is found in the following.

Theorem: Let A be the m x m matrix on the left of inequality (229), and let Al have eigenvalues

Pi > - (232)

Then if equation (229) holds,

A2 ( E)
p < (233)m

for each i.

The proof of this theorem involves a generalized Rayleigh quotient inequality argument. Of course,

Al is nonnegative definite if and only if all m of its eigenvalues are nonnegative. Equality in (233) can

be obtained by letting the columns of V* be eigenvectors of R, in particular those having the m largest,

eigenvalues. This choice produces the Thomson spectral estimator, and J is symmetric. (This theorem

addresses the problem in Section 2.5.)

In conclusion, we have argued that, for a specified resolution 03, there is a limit to the reduction

in error variance possible with multiple window quadratic estimators. The rank m should be approximately

the time bandwidth product NO.
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6.0 CONCLUSIONS

The basic problem in classical spectrum analysis is to project a time series onto a timeljinited

and bandlimited subspace where power can be estimated. Such a subspace can only be approximated. so

the problem can be rephrased as one of constructing approximating subspaces and projections onto them.

The first obvious approach is to build a frequency selective FIR filter, and the natural extension of this

approach is to build a frequency selective linear transformation. In Section 2.0 of this chapter we have

followed this approach to its logical conclusion and found Slepian sequences as the appropriate sequences for

building a subspace that is timelimited and approximately bandlimited. In Section 3.0 we have rephrased the

problem of spectrum analysis as one of estimating parameters in a structured covariance matrix. Maximum

likelihood estimates of these parameters produce spectrum estimators which are essentially equivalent to

the multiwindow spectrum estimators of Thomson and to rank reduced versions of Daniell's frequency

averaged periodogram. The maximum likelihood spectrum estimate: j, t quadratic form in the data that

is formed by complex demodulating the time series, projecting it onto a low-rank subspace, and computing

its power in that subspace. The mean-squared error of the estimator decreases inversely with the rank of

the quadratic form that is constructed in this way. In Section 4.0 we show that every quadratic estimator

of the power spectrum that is required to be nonnegative and modulation invariant must be a quadratic

form in a complex demodulated time series. This fundamental representation theorem characterizes a class

of admissible spectrum estimators. The maximum likelihood estimators are members of this class, but there

are others. They include all of the windowed and frequency averaged periodograms and others discussed in

Section 5.0.

From the point of view of this chapter, there is nothing very fundamental about uniform sampling,

nor is there anything very fundamental about a scalar index parameter for the data. This means that

our results extend to the frequency-wavenumber analysis of nonuniformly sampled space-time series. These

extensions, developed somewhat in [10] and [11], form the basis for a research program in the spectrum

analysis of multiparameter data sequences.
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